7.5 Apply Properties of Logarithms

Before
You evaluated logarithms.

Now
You will rewrite logarithmic expressions.

Why?
So you can model the loudness of sounds, as in Ex. 63.

Key Vocabulary
• base, p. 10

Key Concept
Properties of Logarithms
Let \(b, m, \) and \(n \) be positive numbers such that \(b \neq 1 \).

Product Property
\[\log_b mn = \log_b m + \log_b n \]

Quotient Property
\[\log_b \frac{m}{n} = \log_b m - \log_b n \]

Power Property
\[\log_b m^n = n \log_b m \]

Example 1
Use properties of logarithms
Use \(\log_4 3 \approx 0.792 \) and \(\log_4 7 \approx 1.404 \) to evaluate the logarithm.

a. \[\log_4 \frac{3}{7} = \log_4 3 - \log_4 7 \]
\[\approx 0.792 - 1.404 \]
\[= -0.612 \]
Quotient property
Use the given values of \(\log_4 3 \) and \(\log_4 7 \).
Simplify.

b. \[\log_4 21 = \log_4 (3 \cdot 7) \]
\[= \log_4 3 + \log_4 7 \]
\[\approx 0.792 + 1.404 \]
\[= 2.196 \]
Product property
Use the given values of \(\log_4 3 \) and \(\log_4 7 \).
Simplify.

Power property

Avoid Errors
Note that in general
\[\log_b \frac{m}{n} \neq \log_b m - \log_b n \]
and
\[\log_b mn \neq (\log_b m)(\log_b n). \]

Guided Practice
for Example 1
Use \(\log_6 5 \approx 0.898 \) and \(\log_6 8 \approx 1.161 \) to evaluate the logarithm.

1. \(\log_6 \frac{5}{8} \)
2. \(\log_6 40 \)
3. \(\log_6 64 \)
4. \(\log_6 125 \)
REWRITING EXPRESSIONS You can use the properties of logarithms to expand and condense logarithmic expressions.

Example 2 Expand a logarithmic expression

Expand \(\log_6 \frac{5x^3}{y} \).

\[
\log_6 \frac{5x^3}{y} = \log_6 5x^3 - \log_6 y \\
= \log_6 5 + \log_6 x^3 - \log_6 y \\
= \log_6 5 + 3 \log_6 x - \log_6 y
\]

Example 3 TAKS PRACTICE: Multiple Choice

Which of the following is equivalent to \(\log 3 + 3 \log 4 \) – \(\log 6 \)?

- A) \(\log 6 \)
- B) \(\log 8 \)
- C) \(\log 32 \)
- D) \(\log 61 \)

Solution

\[
\log 3 + 3 \log 4 \) – \(\log 6 = \log 3 + \log 4^3 - \log 6 \\
= \log (3 \cdot 4^3) - \log 6 \\
= \log \frac{3 \cdot 4^3}{6} \\
= \log 32
\]

- The correct answer is C. A) B) C) D)

Guided Practice for Examples 2 and 3

5. Expand \(\log 3x^4 \).

6. Condense \(\ln 4 + 3 \ln 3 - \ln 12 \).

Change-of-Base Formula Logarithms with any base other than 10 or \(e \) can be written in terms of common or natural logarithms using the change-of-base formula. This allows you to evaluate any logarithm using a calculator.

Key Concept

Change-of-Base Formula

If \(a, b, \) and \(c \) are positive numbers with \(b \neq 1 \) and \(c \neq 1 \), then:

\[
\log_c a = \frac{\log_b a}{\log_b c}
\]

In particular, \(\log_c a = \frac{\log a}{\log c} \) and \(\log_c a = \frac{\ln a}{\ln c} \).
EXAMPLE 4 Use the change-of-base formula

Evaluate \(\log_3 8 \) using common logarithms and natural logarithms.

Solution

Using common logarithms:

\[
\log_3 8 = \frac{\log 8}{\log 3} \approx \frac{0.9031}{0.4771} = 1.893
\]

Using natural logarithms:

\[
\log_3 8 = \frac{\ln 8}{\ln 3} \approx \frac{2.0794}{1.0986} = 1.893
\]

EXAMPLE 5 Use properties of logarithms in real life

SOUND INTENSITY For a sound with intensity \(I \) (in watts per square meter), the loudness \(L(I) \) of the sound (in decibels) is given by the function

\[
L(I) = 10 \log \frac{I}{I_0}
\]

where \(I_0 \) is the intensity of a barely audible sound (about \(10^{-12} \) watts per square meter). An artist in a recording studio turns up the volume of a track so that the sound’s intensity doubles. By how many decibels does the loudness increase?

Solution

Let \(I \) be the original intensity, so that \(2I \) is the doubled intensity.

Increase in loudness = \(L(2I) - L(I) \)

\[
= 10 \log \frac{2I}{I_0} - 10 \log \frac{I}{I_0}
\]

\[
= 10 \left(\log 2 + \log \frac{I}{I_0} - \log \frac{I}{I_0} \right)
\]

\[
= 10 \log 2
\]

\[
= 3.01
\]

\(\text{The loudness increases by about 3 decibels.} \)

GUIDED PRACTICE for Examples 4 and 5

Use the change-of-base formula to evaluate the logarithm.

7. \(\log_5 8 \) \hspace{1cm} 8. \(\log_9 14 \) \hspace{1cm} 9. \(\log_{26} 9 \) \hspace{1cm} 10. \(\log_{12} 30 \)

11. WHAT IF? In Example 5, suppose the artist turns up the volume so that the sound’s intensity triples. By how many decibels does the loudness increase?
1. **VOCABULARY** Copy and complete: To condense the expression \(\log_3 2x + \log_3 y \), you need to use the _____ property of logarithms.

2. **WRITING** Describe two ways to evaluate \(\log_7 12 \) using a calculator.

MATCHING EXPRESSIONS Match the expression with the logarithm that has the same value.

3. \(\ln 6 - \ln 2 \)
4. \(2 \ln 6 \)
5. \(6 \ln 2 \)
6. \(\ln 6 + \ln 2 \)

A. \(\ln 64 \)
B. \(\ln 3 \)
C. \(\ln 12 \)
D. \(\ln 36 \)

APPROXIMATING EXPRESSIONS Use \(\log 4 \approx 0.602 \) and \(\log 12 \approx 1.079 \) to evaluate the logarithm.

7. \(\log 3 \)
8. \(\log 48 \)
9. \(\log 16 \)
10. \(\log 64 \)

EXPANDING EXPRESSIONS Expand the expression.

11. \(\log 144 \)
12. \(\log \frac{1}{3} \)
13. \(\log \frac{1}{4} \)
14. \(\log \frac{1}{12} \)

ERROR ANALYSIS Describe and correct the error in expanding the logarithmic expression.

31. \(\log_2 5x = (\log_2 5)(\log_2 x) \)

32. \(\ln 8x^3 = 3 \ln 8 + \ln x \)

CONDENSING EXPRESSIONS Condense the expression.

33. \(\log_4 7 - \log_4 10 \)
34. \(\ln 12 - \ln 4 \)

35. \(2 \log x + \log 11 \)
36. \(6 \ln x + 4 \ln y \)

37. \(5 \log x - 4 \log y \)
38. \(5 \log_4 2 + 7 \log_4 x + 4 \log_4 y \)

39. \(\ln 40 + 2 \ln \frac{1}{2} + \ln x \)
40. \(\log_5 4 + \frac{1}{3} \log_5 x \)

41. \(6 \ln 2 - 4 \ln y \)
42. \(2(\log_3 20 - \log_3 4) + 0.5 \log_3 4 \)

43. **MULTIPLE CHOICE** Which of the following is equivalent to \(3 \log_4 6 \)?

A. \(\log_4 18 \)
B. \(\log_4 72 \)
C. \(\log_4 216 \)
D. \(\log_4 256 \)
44. **MULTIPLE CHOICE** Which of the following statements is **not** correct?

(A) \(\log_3 48 = \log_3 16 + \log_3 3 \)
(B) \(\log_3 48 = 3 \log_3 2 + \log_3 6 \)
(C) \(\log_3 48 = 2 \log_3 4 + \log_3 3 \)
(D) \(\log_3 48 = \log_3 8 + 2 \log_3 3 \)

45. Use the change-of-base formula to evaluate the logarithm.

(a) \(\log_4 7 \)
(b) \(\log_5 13 \)
(c) \(\log_3 15 \)
(d) \(\log_8 22 \)

49. \(\log_3 6 \)
50. \(\log_5 14 \)
51. \(\log_6 27 \)
52. \(\log_8 32 \)

53. \(\log_6 \frac{24}{5} \)
54. \(\log_2 \frac{15}{7} \)
55. \(\log_3 \frac{9}{40} \)
56. \(\log_7 \frac{3}{16} \)

61. **ERROR ANALYSIS** Describe and correct the error in using the change-of-base formula.

\[\log_3 7 = \frac{\log 3}{\log 7} \]

SOUND INTENSITY In Exercises 62 and 63, use the function in Example 5.

62. Find the decibel level of the sound made by each object shown below.

(a) Barking dog: \(I = 10^{-4} \text{ W/m}^2 \)
(b) Ambulance siren: \(I = 10^0 \text{ W/m}^2 \)
(c) Bee: \(I = 10^{-6.5} \text{ W/m}^2 \)

63. The intensity of the sound of a trumpet is \(10^3 \) watts per square meter. Find the decibel level of a trumpet.

64. **OPEN-ENDED MATH** For each statement, find positive numbers \(M, N, \) and \(b \) (with \(b \neq 1 \)) that show the statement is false in general.

(a) \(\log_b (M + N) = \log_b M + \log_b N \)
(b) \(\log_b (M - N) = \log_b M - \log_b N \)

CHALLENGE In Exercises 65–68, use the given hint and properties of exponents to prove the property of logarithms.

65. **Product property** \(\log_b mn = \log_b m + \log_b n \)
(Hint: Let \(x = \log_b m \) and let \(y = \log_b n \). Then \(m = b^x \) and \(n = b^y \).)

66. **Quotient property** \(\log_b \frac{m}{n} = \log_b m - \log_b n \)
(Hint: Let \(x = \log_b m \) and let \(y = \log_b n \). Then \(m = b^x \) and \(n = b^y \).)

67. **Power property** \(\log_b m^n = n \log_b m \)
(Hint: Let \(x = \log_b m \). Then \(m = b^x \) and \(m^n = b^{nx} \).)

68. **Change-of-base formula** \(\log_b a = \frac{\log_a a}{\log_c c} \)
(Hint: Let \(x = \log_b a, y = \log_b c, \) and \(z = \log_c a \). Then \(a = b^x, c = b^y, \) and \(a = c^z \), so that \(b^x = c^z \).)
69. CONVERSATION Three groups of people are having separate conversations in a room. The sound of each conversation has an intensity of \(1.4 \times 10^{-3}\) watts per square meter. What is the decibel level of the combined conversations in the room?

70. PARKING GARAGE The sound made by each of five cars in a parking garage has an intensity of \(3.2 \times 10^{-4}\) watts per square meter. What is the decibel level of the sound made by all five cars in the parking garage?

71. ★ SHORT RESPONSE The intensity of the sound TV ads make is ten times as great as the intensity for an average TV show. How many decibels louder is a TV ad? Justify your answer using properties of logarithms.

72. BIOLOGY The loudest animal on Earth is the blue whale. It can produce a sound with an intensity of \(10^{6.8}\) watts per square meter. The loudest sound a human can make has an intensity of \(10^{0.8}\) watts per square meter. Compare the decibel levels of the sounds made by a blue whale and a human.

73. ★ EXTENDED RESPONSE The f-stops on a 35 millimeter camera control the amount of light that enters the camera. Let \(s\) be a measure of the amount of light that strikes the film and let \(f\) be the f-stop. Then \(s\) and \(f\) are related by the equation:

\[s = \log_2 f^2\]

a. Use Properties Expand the expression for \(s\).

b. Calculate The table shows the first eight f-stops on a 35 millimeter camera. Copy and complete the table. Describe the pattern you observe.

<table>
<thead>
<tr>
<th>(f)</th>
<th>1.414</th>
<th>2.000</th>
<th>2.828</th>
<th>4.000</th>
<th>5.657</th>
<th>8.000</th>
<th>11.314</th>
<th>16.000</th>
</tr>
</thead>
</table>

c. Reasoning Many 35 millimeter cameras have nine f-stops. What do you think the ninth f-stop is? Explain your reasoning.
74. **CHALLENGE** Under certain conditions, the wind speed \(s\) (in knots) at an altitude of \(h\) meters above a grassy plain can be modeled by this function:

\[s(h) = 2 \ln(100h) \]

a. By what factor does the wind speed increase when the altitude doubles?

b. Show that the given function can be written in terms of common logarithms as
\[s(h) = \frac{2}{\log e} (\log h + 2). \]

Mixed Review for TAKS

TAKS Practice Which of the following is *not* an example of a Pythagorean triple? **TAKS Obj. 10**

- A 8, 15, 17
- B 48, 64, 80
- C 7, 23, 25
- D 11, 60, 61

TAKS Practice Which inequality best describes the range of the function whose graph is shown? **TAKS Obj. 2**

- F \(y \leq -1\)
- G \(y \leq 3\)
- H \(y \geq -1\)
- J \(y \geq 3\)

Quiz for Lessons 7.4–7.5

Evaluate the logarithm without using a calculator. **(p. 499)**

1. \(\log_4 16\)
2. \(\log_5 1\)
3. \(\log_8 8\)
4. \(\log_{1/2} 32\)

Graph the function. State the domain and range. **(p. 499)**

5. \(y = \log_2 x\)
6. \(y = \ln x + 2\)
7. \(y = \log_3 (x + 4) - 1\)

Expand the expression. **(p. 507)**

8. \(\log_2 5x\)
9. \(\log_5 x^7\)
10. \(\ln 5xy^3\)
11. \(\log_3 \frac{6y^4}{x^8}\)

Condense the expression. **(p. 507)**

12. \(\log_3 5 - \log_3 20\)
13. \(\ln 6 + \ln 4x\)
14. \(\log_6 5 + 3 \log_6 2\)
15. \(4\ln x - 5\ln x\)

Use the change-of-base formula to evaluate the logarithm. **(p. 507)**

16. \(\log_3 10\)
17. \(\log_7 14\)
18. \(\log_5 24\)
19. \(\log_8 40\)

20. **SOUND INTENSITY** The sound of an alarm clock has an intensity of \(I = 10^{-4}\) watts per square meter. Use the model \(L(I) = 10 \log \frac{I}{I_0}\), where \(I_0 = 10^{-12}\) watts per square meter, to find the alarm clock’s loudness \(L(I)\). **(p. 507)**

Extra Practice for Lesson 7.5, p. 1016

Online Quiz

Apply Properties of Logarithms
7.5 **Graph Logarithmic Functions**

TEKS a.5, a.6, 2A.11.B

QUESTION How can you graph logarithmic functions on a graphing calculator?

You can use a graphing calculator to graph logarithmic functions simply by using the \(\log \) or \(\ln \) key. To graph a logarithmic function having a base other than 10 or \(e \), you need to use the change-of-base formula to rewrite the function in terms of common or natural logarithms.

EXAMPLE Graph logarithmic functions

Use a graphing calculator to graph \(y = \log_2 x \) and \(y = \log_2 (x - 3) + 1 \).

STEP 1 **Rewrite functions** Use the change-of-base formula to rewrite each function in terms of common logarithms.

\[
\begin{align*}
y &= \log_2 x \\
&= \frac{\log x}{\log 2} \\
y &= \log_2 (x - 3) + 1 \\
&= \frac{\log (x - 3)}{\log 2} + 1
\end{align*}
\]

STEP 2 **Enter functions** Enter each function into a graphing calculator.

\[
\begin{align*}
Y1 &= \frac{\log X}{\log 2} \\
Y2 &= \frac{\log (X-3)}{\log 2} + 1
\end{align*}
\]

STEP 3 **Graph functions** Graph the functions.

PRACTICE Use a graphing calculator to graph the function.

1. \(y = \log_4 x \)
2. \(y = \log_8 x \)
3. \(f(x) = \log_3 x \)
4. \(y = \log_5 x \)
5. \(y = \log_{12} x \)
6. \(g(x) = \log_9 x \)
7. \(y = \log_3 (x + 2) \)
8. \(y = \log_5 x - 1 \)
9. \(f(x) = \log_4 (x - 5) - 2 \)
10. \(y = \log_2 (x + 4) - 7 \)
11. \(y = \log_7 (x - 5) + 3 \)
12. \(g(x) = \log_3 (x + 6) - 6 \)
13. **REASONING** Graph \(y = \ln x \). If your calculator did not have a natural logarithm key, explain how you could graph \(y = \ln x \) using the \(\text{LOG} \) key.